/* Euler #18 in Picat. """ By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23. 3 7 4 2 4 6 8 5 9 3 That is, 3 + 7 + 4 + 9 = 23. Find the maximum total from top to bottom of the triangle below: 75 95 64 17 47 82 18 35 87 10 20 04 82 47 65 19 01 23 75 03 34 88 02 77 73 07 63 67 99 65 04 28 06 16 70 92 41 41 26 56 83 40 80 70 33 41 48 72 33 47 32 37 16 94 29 53 71 44 65 25 43 91 52 97 51 14 70 11 33 28 77 73 17 78 39 68 17 57 91 71 52 38 17 14 91 43 58 50 27 29 48 63 66 04 68 89 53 67 30 73 16 69 87 40 31 04 62 98 27 23 09 70 98 73 93 38 53 60 04 23 NOTE: As there are only 16384 routes, it is possible to solve this problem by trying every route. However, Problem 67, is the same challenge with a triangle containing one-hundred rows; it cannot be solved by brute force, and requires a clever method! ;o) """ This Picat model was created by Hakan Kjellerstrand, hakank@gmail.com See also my Picat page: http://www.hakank.org/picat/ */ main => time(go). go => euler18c. euler18 => euler18c. p18(Triangle) => Triangle = [[75], [95,64], [17,47,82], [18,35,87,10], [20, 4,82,47,65], [19, 1,23,75, 3,34], [88, 2,77,73, 7,63,67], [99,65, 4,28, 6,16,70,92], [41,41,26,56,83,40,80,70,33], [41,48,72,33,47,32,37,16,94,29], [53,71,44,65,25,43,91,52,97,51,14], [70,11,33,28,77,73,17,78,39,68,17,57], [91,71,52,38,17,14,91,43,58,50,27,29,48], [63,66, 4,68,89,53,67,30,73,16,69,87,40,31], [ 4,62,98,27,23, 9,70,98,73,93,38,53,60, 4,23]]. euler18a => p18(Tri), M = new_map(), M.put(max_val,0), pp(1,1, Tri[1,1], Tri, M), writeln(max_val=M.get(max_val)). pp(Row, Column, Sum, Tri, M) => if Sum > M.get(max_val) then M.put(max_val,Sum) end, Row := Row + 1, if Row <= Tri.length then foreach(I in 0..1) pp(Row,Column+I, Sum+Tri[Row,Column+I], Tri, M) end end. euler18b => p18(Tri), get_global_map().put(max_val,0), pp2(1,1, Tri[1,1], Tri), writeln(max_val=get_global_map().get(max_val)). pp2(Row, Column, Sum, Tri) => G = get_global_map(), if Sum > G.get(max_val) then G.put(max_val,Sum) end, Row := Row + 1, if Row <= Tri.length then foreach(I in 0..1) pp2(Row,Column+I, Sum+Tri[Row,Column+I], Tri) end end. % Neng-Fa's approach: % This is slightly faster than euler18a and euler18b p18c(Triangle) => Triangle = {{75}, {95,64}, {17,47,82}, {18,35,87,10}, {20,4,82,47,65}, {19,1,23,75,3,34}, {88,2,77,73,7,63,67}, {99,65,4,28,6,16,70,92}, {41,41,26,56,83,40,80,70,33}, {41,48,72,33,47,32,37,16,94,29}, {53,71,44,65,25,43,91,52,97,51,14}, {70,11,33,28,77,73,17,78,39,68,17,57}, {91,71,52,38,17,14,91,43,58,50,27,29,48}, {63,66,4,68,89,53,67,30,73,16,69,87,40,31}, { 4,62,98,27,23,9,70,98,73,93,38,53,60,4,23}}. euler18c => p18c(Tri), pp(1,1,Tri,Sum), writeln(max_val=Sum). table (+,+,+,max) pp(Row,_Column,Tri,Sum),Row>Tri.length => Sum=0. pp(Row,Column,Tri,Sum) ?=> pp(Row+1,Column,Tri,Sum1), Sum = Sum1+Tri[Row,Column]. pp(Row,Column,Tri,Sum) => pp(Row+1,Column+1,Tri,Sum1), Sum = Sum1+Tri[Row,Column].