/* Euler #11 in Picat. Problem 11 """ In the 2020 grid below, four numbers along a diagonal line have been marked in red. ... The product of these numbers is 26 x 63 x 78 x 14 = 1788696. What is the greatest product of four adjacent numbers in any direction (up, down, left, right, or diagonally) in the 20 x 20 grid? """ */ % This Picat model was created by Hakan Kjellerstrand, hakank@gmail.com % See also my Picat page: http://www.hakank.org/picat/ % import util. main => time(go). go => euler11. % Euler 11 p11(Mat) => Mat = [[08,02,22,97,38,15,00,40,00,75,04,05,07,78,52,12,50,77,91,08], [49,49,99,40,17,81,18,57,60,87,17,40,98,43,69,48,04,56,62,00], [81,49,31,73,55,79,14,29,93,71,40,67,53,88,30,03,49,13,36,65], [52,70,95,23,04,60,11,42,69,24,68,56,01,32,56,71,37,02,36,91], [22,31,16,71,51,67,63,89,41,92,36,54,22,40,40,28,66,33,13,80], [24,47,32,60,99,03,45,02,44,75,33,53,78,36,84,20,35,17,12,50], [32,98,81,28,64,23,67,10,26,38,40,67,59,54,70,66,18,38,64,70], [67,26,20,68,02,62,12,20,95,63,94,39,63,08,40,91,66,49,94,21], [24,55,58,05,66,73,99,26,97,17,78,78,96,83,14,88,34,89,63,72], [21,36,23,09,75,00,76,44,20,45,35,14,00,61,33,97,34,31,33,95], [78,17,53,28,22,75,31,67,15,94,03,80,04,62,16,14,09,53,56,92], [16,39,05,42,96,35,31,47,55,58,88,24,00,17,54,24,36,29,85,57], [86,56,00,48,35,71,89,07,05,44,44,37,44,60,21,58,51,54,17,58], [19,80,81,68,05,94,47,69,28,73,92,13,86,52,17,77,04,89,55,40], [04,52,08,83,97,35,99,16,07,97,57,32,16,26,26,79,33,27,98,66], [88,36,68,87,57,62,20,72,03,46,33,67,46,55,12,32,63,93,53,69], [04,42,16,73,38,25,39,11,24,94,72,18,08,46,29,32,40,62,76,36], [20,69,36,41,72,30,23,88,34,62,99,69,82,67,59,85,74,04,36,16], [20,73,35,29,78,31,90,01,74,31,49,71,48,86,81,16,23,57,05,54], [01,70,54,71,83,51,54,69,16,92,33,48,61,43,52,01,89,19,67,48]]. euler11 => p11(M), % rows Max1 = max([max(running_prod(Row, 4)) : Row in M]), % columns Max2 = max([max(running_prod(Column, 4)) : Column in M.transpose()]), % diag down Max3 = max([max([prod([M[A+I,A+J] : A in 0..3]) : I in 1..17]) : J in 1..17]), % diag up Max4 = max([max([prod([M[I-A,J+A] : A in 0..3]) : I in 4..20]) : J in 1..17]), % writeln([Max1,Max2,Max3,Max4]), writeln(max([Max1,Max2,Max3,Max4])). % % Using rows() and columns() from the utils module, % and skips all the intermediate max'es. % euler11b => p11(M), writeln(max(([running_prod(Row, 4) : Row in M.rows()] ++ [running_prod(Column, 4) : Column in M.columns()] ++ [[prod([M[A+I,A+J] : A in 0..3]) : I in 1..17] : J in 1..17] ++ [[prod([M[I-A,J+A] : A in 0..3]) : I in 4..20] : J in 1..17] ).flatten())). % % slices an array A [...] into slices of length SliceLen % and returns a list List % array_slice(A, SliceLen) = List => List = [A2 : I in 1..A.length-SliceLen, A2 = [ A[J] : J in I..I+SliceLen-1] ]. % running prod of a list L1 with slice length RLen -> L2 running_prod(L1, RLen) = L2 => Slices = array_slice(L1, RLen), L2 = [Prod : LL in Slices, Prod = prod(LL)].