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Abstract
Picat is a new and interesting programming language, combing many different and exciting programming
paradigms: logic programming, imperative programming, constraint programming, functional programming,
tabling, and planning. This paper gives a personal discussion of some of Picat’s features with several code
examples. Keywords: Picat, Constraint Programming, Logic Programming, Planning, Prolog.

1 INTRODUCTION

Picat [1] is a new programming language created by Neng-Fa Zhou and Jonathan Fruhman. The specification was
published in December 2012 in [3]. The first alpha version was made available in May 2013 and the first stable
version 0.1 was released on 2014-02-01. The current version is 0.3, which was released on 2014-05-23.

I started to test Picat in May 2013 when the first alpha version was available. As first, I tested Picat’s support
of Constraint Programming (CP), which is a programming paradigm that I am very interested in (see for example
my Constraint Programming Blog [6]). Then, I quickly got fascinated by the complete system. In this paper, I
will explain why.

The name Picat is an acronym and is explained in the quote below, taken from the Picat’s web site [1]:
Picat is a general-purpose language that incorporates features from logic programming, functional programming,
and scripting languages. The letters in the name summarize Picat’s features: Pattern-matching, Imperative,
Constraints, Actors, and Tabling. I would also like to emphasize the following important paradigms/features:
Logic-based, Planning, and Functions.

All the programs and models given in this paper, including hundreds of others, are available on my My Picat
Page [2] and also in my GitHub repository: https://github.com/hakank/hakank/tree/master/picat/.

2 CONSTRAINTS

Picat has a high-level support for Constraint Programming, much like most CLP systems. Let’s see how it looks
like with some examples.

2.1 SEND+MORE=MONEY
Let’s begin with the SEND+MORE=MONEY puzzle. In Picat it can be stated as follows:

import cp.

go =>
sendmore (Digits),
println(Digits) .

sendmore (Digits) =>
Digits = [S,E,N,D,M,0,R,Y],
Digits :: 0..9,
all_different(Digits),
S # 0,
M #> 0,
1000%S + 100*E + 10*N + D
+ 1000*M + 100%0 + 10*R + E
#= 10000*M + 1000*0 + 100*N + 10*E + Y,
solve(Digits).
Except for the =>, it’s much like any C(L)P model:
e Domains of variables are declared by using the domain constraint Variable :: Domain.
e A special character (here #) is used to denote arithmetic constraints (e.g., #> denotes greater than).
e The solve predicate is used to label variables with values (labeling options can be given in solve/2).

e Global constraints are used whenever appropriate (all_different/1).



2.2 N-queens
Below is a model for the N-queens problem, a common and mandatory CP example:

import cp.

queens3(N, Q) =>
Q=new_list(N),
Q :: 1..N,
all_different(Q),
all_different([$Q[I]-I : I in 1..N1),
all_different([$Q[II+I : I in 1..N]),
solve([£f£],Q).

The argument [$Q[I]-I : I in 1..N] is a list comprehension. Note that here we must use $Q[I]-I (i.e. Q[I]
preceded with a dollar character) since it is a term, not a function call. This special notation is needed because
Picat also support functions.

Here are the CPU times for finding the first solutions for different values of N:

N=8: 0.0s, 23 backtracks
N=100: 0.03s, 22 backtracks
N=400: 0.44s, 10 backtracks
N=1000: 2.7s, 2 backtracks
N=1500: 8.7s 2889 backtracks

Picat is perhaps not the fastest CP system in the world, but it’s quite fast.

2.3 Reifications and Indexing

Reification amounts to reasoning about the satisfibility of constraints. It is a very important concept in Constraint
Programming. A nice syntax for stating reifications tend to considerably simplify modeling.

Below is a decomposition of the alldifferent_except_0(Xs) constraint, which is one of my favorite global
constraints. This constraint is true if all the elements in X's that are not equal to 0 (zero) are distinct.

alldifferent_except_0(Xs) =>
foreach(I in 1..Xs.length-1, J in I+1..Xs.length)
(Xs[I] #'= 0 #/\ Xs[J] #!= 0) #=> (Xs[I] #'= Xs[J])
end.

go =>
N=5, X =new_list(N), X :: 0..N,
alldifferent_except_0(X),
solve(X),
println(X).

The #=> operator denotes implication. This example also illustrates the use of indexing of lists. The index
notation Xs[I] requires the index expression I to given an integer. If an index is a domain variable, then the
constraint element/3 should be used. Note that lists in Picat are singly linked lists, and Xs[I] takes 0(I) time.
For large collections, arrays should be used instead of lists. Also note that the foreach loop iterates over all the
values in the range and there is no way to break out the loop. If it is required to iterate over values in a range
until a condition is met, then the while loop or recursion should be used instead.

2.4 The Least Diff Problem, Optimization

The Least Diff problem is a simple optimization problem: Minimize the difference between ABCDE-FGHIJ, where
the letters A..J are distinct digits.

import cp.
least_diff(L,Diff) =>
L = [A,B,C,D,E,F,G,H,I,J],
L ::0..9,



all_different(L),
X #= 10000*A + 1000%*B + 100*C + 10xD + E,
Y #= 10000*F + 1000*G + 100*H + 10*I + J,
Diff #= X - Y,
Diff #> O, % break symmetry
solve([$min(Diff)], L),
println(L).
The labeling option $min(Diff) (note the existence of the dollar character) gives the objective variable to be
minimized.
The program prints an optimal solution. When developing more advanced models, it is sometimes useful to
use the labeling option $report(Goal) to show how an optimal value is reached. Here is an example from the
model einav_puzzle.pi:

solve($[min(TotalSum), report(printf ("Found %d\n", TotalSum)), ffd],Vars),

2.5 Built-in Global Constraints

Picat supports the most common global constraints as shown in the list below. See Picat Guide [7], section 11.5
for the details.

all different (List) global_cardinality(List, Pairs)
all distinct(List) max (List) #= FExp

assignment (List) min(List) #= Exp

circuit (List) neqgs(NegList)

cond(Condition, ThenExp, ElseExp) #= Exp serialized(Starts, Durations)
count (Value, List,Rel,N) subcircuit (List)

cumulative (Starts, Durations, Resources, Limit) sum(List) #= Exp
diffn(RectangleList) table_in(Vars, Relation)
disjunctive_tasks(Tasks) tablenotin(Vars, Relation)

element (I, List, V)

2.6 Labeling

Picat supports most of the standard variable and value labeling strategies, including rand, rand_var, and rand_val,
which were introduced in version 0.3. For example, in solve([ff,down], Vars), the option ff means first-fail,
and down means to choose a value from the largest value to the smallest for a selected variable.

3 TABLING

Tabling here refers to memoization (”caching the results”, see [5]). A simple example of tabling is the Fibonacci
program.

table

fib(0)=1.

fib(1)=1.
fib(N)=fib(N-1)+fib(N-2).

The keyword table in the beginning means that the function is tabled. Without tabling this definition is very
slow for larger N because of the exponential number of calls. When tabled, all the calls and their answers will be
cached. In this way, subsequent calls are then resolved by simple table lookups, which can considerably speed up
the execution. The following query calculates the 10000th Fibonacci number.

Picat> cl(fib)
Picat> time(F=fib(10000))

This call takes about 0.33s. Without tabling, the query would take “forever”.

Note that in some cases using tabling may actually slow down programs because of the memory overhead
involved, so one has to use tabling with caution and test both versions with and without tabling.

Another use of tabling is for dynamic programming. Here is an example for calculating the edit distance (taken
from Picat’s example exs.pi) where the third argument (D) is to be minimized for each pair of input arguments
with the table mode +.



table(+,+,min)

edit([1,[]1,D) => D=0.

edit([X|Xs], [XIYs],D) => ¥ copy
edit(Xs,Ys,D).

edit(Xs,[_Y|Ys],D) ?=> Y% insert
edit(Xs,Ys,D1),
D=D1+1.

edit([_X|Xs],Ys,D) => % delete
edit(Xs,Ys,D1),
D=D1+1.

4 IMPERATIVE PROGRAMMING

Picat supports loops, which can be seen as a trademark in imperative programming. According to [3], the loop
construct was one of the main reasons why Neng-Fa Zhou wanted to create a new programming language. Zhou
was not satisfied with the foreach loop he introduced into B-Prolog [4]. One important feature that distinguishes
Picat’s foreach loop from B-Prolog’s (as well as ECLiPSe’s and SICStus Prolog’s) is that the user does not have
to explicitly declare either local or global variables. Scopes of variables are determined by the following rule:
Variables that occur only in a loop, but do not occur before the loop in the outer scope, are local to each iteration
of the loop. This rule makes loops much easier to use and read.

Here is an example for the Project Euler problem #2 [8], where the task is to calculate the sum of all even
Fibonacci numbers below 4000000:

euler2b =>

I=1,

Sum = I,

F = £fib(D),

while (F < 4000000)
if F mod 2 == 0 then

Sum := Sum + F

end,
I:=1+1,
F := £fib(I)

end,

writeln(Sum) .

This program calculates the solution in 0.015s. The possibility to switch among different paradigms is a cool
thing of Picat.

5 PATTERN MATCHING

Pattern matching in Picat is more influenced by pattern matching found in functional programming (e.g. Haskell)
than by Prolog’s pattern matching/unification. This might confuse some programmers with a Prolog background.
Here is a definition of quick-sort, which shows some of the pattern matching constructs in Picat.

gsort ([1) = [I.
gsort([HIT]) = gsort([E : E in T, E =< H]) ++
[H] ++

gsort([E : E in T, E > H]).
The standard take function in functional programming can be defined as follows:

take(_Xs,0) = [].
take([1,_N) = [].
take([X|Xs],N) = [X|take(Xs,N-1)].



6 NONDETERMINISM AND PROLOG INFLUENCES

Some of the above examples already show the clear influences from Prolog. Here we give more examples.

Picat, like Prolog, supports nondeterminism through a backtracking mechanism. This is a really great feature
of Picat and is one of the reasons that I like Picat. Predicates using backtracking must be defined with ?=> instead
of =>.

6.1 Member

The following defines a nondeterministic predicate, member2. This predicate can be used both to check for
membership and to retrieve elements from a given list.

member2(X, [Y|_]) 7=> X=Y.
member2 (X, [_|L]) => member2(X,L)

Both this predicate and the built-in member/2 predicate work as in Prolog.

Picat> member (2, [1,2,3])
yes
Picat> member (4, [1,2,3])
no
Picat> member (X, [1,2,3])
X=1;
X=2;
X=3;
no

The next solution will be shown when the user enters a ; (semicolon) after a solution in the Picat shell.

One difference between Picat’s pattern matching and Prolog’s is that no variables in calls can get bound
during Picat’s pattern matching, and such bindings must be explicitly done in the body of a rule. For example,
the definition of append/3 cannot be stated in Picat as nicely as in Prolog.

append2(Xs,Ys,Zs) ?=> Xs=[], Ys=Is.
append2(Xs,Ys,Zs) => Xs=[X|XsR], Zs=[X|ZsR], append2(XsR,Ys,ZsR).

This version has the same non-deterministic behavior as in Prolog, but it does not deterministically branches on
the first argument in case it is non-variable. The implementation of the built-in append takes care of both the
input and output modes of the first argument.

6.2 Predicate Facts

Predicate facts are bodyless definitions akin to Prolog’s ”data definition”. Predicate facts must are prepended
by an index declaration to make them accessible as data (this explicit declaration is one of the differences from
Prolog). For example, here is a stripped down version of the transitive closure example transitive_closure.pi:

top 7=>
reach(X,Y),
writeln([X,Y]),
fail.

top => true.

table
reach(X,Y) 7=> edge(X,Y).
reach(X,Y) => edge(X,Z),reach(Z,Y).

index (-,-) (+,-)
edge(1,2). edge(1,3). edge(2,4). edge(2,5). edge(3,6).
The index declaration gives the modes to the compiler for converting the facts into pattern-matching rules. The

mode (-) indicates a variable and the mode (+) indicates a ground term. As mentioned above, the use of table
will cache the reach predicate. Using table also avoids looping in case the graph contains cycles.



6.3 Other Nondeterministic Predicates

Here are the nondeterministic built-in predicates in Picat. Many of these are wrappers of the underlying B-Prolog
predicates.

append(W, X,Y, Z) nth(I, List, Val)
append(X,Y, Z) permutation(List, Perm)
between(From,To, X) repeat

find(String, Substring, From,To) select(X, List, ResList)
find_ignore_case(String, Substring, From,To) solve(Options,Vars) (CP)
indomain(Var) (CP) solve(Vars) (CP)
indomain_down(Var) (CP) statistics(Name, Value)

member (T erm, List)
Picat also has a findall function: List = findall(X,predicate(X)). Note that the Picat documentation
generally recommends writing a function rather than a predicate in case only one answer is required since functions
are generally easier to debug than predicates.

7 COMMON INTERFACE TO CP, SAT AND MIP SOLVERS

Picat also supports solving constraint problems using SAT through an interface with Lingeling and MiniSat, and
using MIP through an interface with GLPK. In order to switch to a different solver, we just need to import the
solver module. The CP models given above also work if import cp is changed to import sat or import mip.

Note that when the mip solver is used all nonlinear constraints on integer-domain variables, including reification
and global constraints, are linearized. A CP model that includes nonlinear constraints may perform poorly when
the mip module is used. On the other hand, the SAT solver can be quite fast in certain cases. The mip module
also supports constraints over real variables, which is not the case for cp or sat.

8 PLANNING

Another thing of Picat that I really enjoy is the planner module for modeling and solving planning problems.
Here are the steps we need to follow in order to model a planning problem:

e Import the module: import planner.

e Define the action predicate for the legal moves: action(FromState, ToState, Move, Cost).
e Define the final predicate for goal state(s): final (State) succeeds if State is a final state.
e Call one of the plan predicates with an initial state and other appropriate arguments.

The following gives a simple planning example (test_planner M12.pi):

import planner.

go =>
Init = [8,11,6,1,10,9,4,3,12,7,2,5],
time(best_plan(Init, Plan)),
writeln(Plan),
writeln(len=Plan.length),
nl.

final (Goal) =>
Goal=[1,2,3,4,5,6,7,8,9,10,11,12].

% merge move
action([M1,M12,M2,M11,M3,M10,M4,M9,M5,M8,M6,M7] ,To,M,Cost) 7=>
Cost=1, M=m, To=[M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12].

% reverse move
action([M12,M11,M10,M9,M8,M7,M6,M5,M4,M3,M2,M1] ,To,M,Cost) =>
Cost=1,M=r,To=[M1,M2,M3,M4,M5,M6,M7 ,M8,M9,M10,M11,M12] .



There are two actions: merge (perfect shuffle) and reverse. It is important to make the first rule of action
backtrackable with ?=>, because otherwise the second rule would never be used.
Picat finds the shortest solution for this problem instance (27 steps) in about 1s:

[m,m,m,r,m,m,m,r,m,m,m,m,r,m,r,m,r,m,m,r,m,m,r,m,m,m,r]

For this kind of ”straight” planning problems, it’s often much easier to model and much faster to solve using
the planner module than using CP/SAT solvers.

Based on the planner module, I have written a GPS/STRIPS-inspired module that has support for add-lists
and delete-lists. See my planning programs for some examples: http://www.hakank.org/picat/#planning.

9 OTHER FEATURES OF PICAT

Picat has many other features that are not covered in this paper. See the Picat User’s Guide for a detailed
description.

e Maps (i.e., hash tables), including global maps.
e Debugging and tracing, akin to Prolog’s debug facilities.

e The io and os modules for handling files and directories. Reading files is often much easier in Picat than in
standard Prolog

e An interface to PRISM (probabilistic reasoning and learning).
e The math module for standard math functions, including primes(Int), prime(Int), random(), random2 ().

e The Picat shell, which is much like a Prolog shell

10 SO, WHY DO I LIKE PICAT?

To summarize, here are the reasons that make me like Picat: Support of different paradigms in one system; support
for CP at a high level; the same encoding for CP, SAT and MIP; nondeterminism as seen in logic programming;
imperative programming; functional programming (kind of); and the planner module. 1 enjoy programming in
Picat because it suites my mindset very well.
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