/* Euler Problem 18 in B-Prolog """ By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23. 3 7 4 2 4 6 8 5 9 3 That is, 3 + 7 + 4 + 9 = 23. Find the maximum total from top to bottom of the triangle below: 75 95 64 17 47 82 18 35 87 10 20 04 82 47 65 19 01 23 75 03 34 88 02 77 73 07 63 67 99 65 04 28 06 16 70 92 41 41 26 56 83 40 80 70 33 41 48 72 33 47 32 37 16 94 29 53 71 44 65 25 43 91 52 97 51 14 70 11 33 28 77 73 17 78 39 68 17 57 91 71 52 38 17 14 91 43 58 50 27 29 48 63 66 04 68 89 53 67 30 73 16 69 87 40 31 04 62 98 27 23 09 70 98 73 93 38 53 60 04 23 NOTE: As there are only 16384 routes, it is possible to solve this problem by trying every route. However, Problem 67, is the same challenge with a triangle containing one-hundred rows; it cannot be solved by brute force, and requires a clever method! ;o) """ Answer: max_val=1074 This is a backport of my Picat model http://hakank.org/picat/euler18.pi Model created by Hakan Kjellerstrand, hakank@gmail.com See also my B-Prolog page: http://www.hakank.org/bprolog/ */ go :- time(euler18). %% %% 0.0s %% euler18 :- p18(Tri), pp(1,1,Tri,Sum), writeln(max_val=Sum). p18(Triangle) :- Triangle = [[75], [95,64], [17,47,82], [18,35,87,10], [20, 4,82,47,65], [19, 1,23,75, 3,34], [88, 2,77,73, 7,63,67], [99,65, 4,28, 6,16,70,92], [41,41,26,56,83,40,80,70,33], [41,48,72,33,47,32,37,16,94,29], [53,71,44,65,25,43,91,52,97,51,14], [70,11,33,28,77,73,17,78,39,68,17,57], [91,71,52,38,17,14,91,43,58,50,27,29,48], [63,66, 4,68,89,53,67,30,73,16,69,87,40,31], [ 4,62,98,27,23, 9,70,98,73,93,38,53,60, 4,23]]. %% %% From Neng-Fa Zhou. %% :- table pp(+,+,+,max). pp(Row,_Column,Tri,Sum) :- length(Tri,Len), Row > Len, Sum is 0. pp(Row,Column,Tri,Sum) :- length(Tri,Len), Row =< Len, Row1 is Row+1, pp(Row1,Column,Tri,Sum1), matrix_element(Tri,Row,Column,TriRC), Sum is Sum1 + TriRC. pp(Row,Column,Tri,Sum) :- length(Tri,Len), Row =< Len, Row1 is Row + 1, Column1 is Column + 1, pp(Row1,Column1,Tri,Sum1), matrix_element(Tri,Row,Column,TriRC), Sum is Sum1 + TriRC. matrix_element(X, I, J, Val) :- nth1(I, X, Row), nth1(J, Row, Val).