/* SONET problem in B-Prolog. From the ESSENCE' model in the Minion Translator examples: http://www.cs.st-andrews.ac.uk/~andrea/examples/sonet/sonet_problem.eprime """ The SONET problem is a network design problem: set up a network between n nodes, where only certain nodes require a connection. Nodes are connected by putting them on a ring, where all nodes on a ring can communicate. Putting a node on a ring requires a so-called ADM, and each ring has a capacity of nodes, i.e. ADMs. There is a certain amount of rings, r, that is available. The objective is to set up a network by using a minimal amount of ADMs. About the problem model The problem model has the amount of rings ('r'), amount of nodes('n'), the 'demand' (which nodes require communication) and node-capacity of each ring ('capacity_nodes') as parameters. The assignement of nodes to rings is modelled by a 2-dimensional matrix 'rings', indexed by the amnount of rings and nodes. The matrix-domain is boolean: If the node in column j is assigned to the ring in row i, then rings[i,j] = 1 and 0 otherwise. So all the '1's in the matrix 'rings' stand for an ADM. Hence the objective is to minimise the sum over all columns and rows of matrix 'rings'. """ Model created by Hakan Kjellerstrand, hakank@gmail.com See also my B-Prolog page: http://www.hakank.org/bprolog/ */ go :- R = 4, N = 5, Demand = [[0,1,0,1,0], [1,0,1,0,0], [0,1,0,0,1], [1,0,0,0,0], [0,0,1,0,0]], CapacityNodes = [3,2,2,1], % decision variables matrix(Rings,[R,N]), term_variables(Rings,Vars), Vars :: 0..1, % to optimize Z #= sum([(Rings[Ring,Client]) : Ring in 1..R, Client in 1..N]), % if there is a demand between 2 nodes, then there has to exist % a ring, on which they are both installed foreach(Client1 in 1..N, Client2 in Client1+1..N, [Ring,R1,R2], ( Demand[Client1,Client2] =:= 1 -> matrix_element(Rings,Ring,Client1,R1), matrix_element(Rings,Ring,Client2,R2), R1 + R2 #>= 2 ; true ) ), % original comment: % capacity of each ring must not be exceeded foreach(Ring in 1..R, sum([Rings[Ring,Client] : Client in 1..N]) #=< CapacityNodes[Ring] ), % Z #= 7, % for showing all 6 optimal solutions minof(labeling(Vars),Z), % labeling(Vars), writeln(z:Z), foreach(RR in Rings, writeln(RR)), nl. matrix_element(X, I, J, Val) :- nth1(I, X, Row), element(J, Row, Val). matrix(_, []) :- !. matrix(L, [Dim|Dims]) :- length(L, Dim), foreach(X in L, matrix(X, Dims)).