/* Coins puzzle in B-Prolog. Problem from Tony Hürlimann: "A coin puzzle - SVOR-contest 2007" http://www.svor.ch/competitions/competition2007/AsroContestSolution.pdf """ In a quadratic grid (or a larger chessboard) with 31x31 cells, one should place coins in such a way that the following conditions are fulfilled: 1. In each row exactly 14 coins must be placed. 2. In each column exactly 14 coins must be placed. 3. The sum of the quadratic horizontal distance from the main diagonal of all cells containing a coin must be as small as possible. 4. In each cell at most one coin can be placed. The description says to place 14x31 = 434 coins on the chessboard each row containing 14 coins and each column also containing 14 coins. """ Cf the LPL model: http://diuflx71.unifr.ch/lpl/GetModel?name=/puzzles/coin Model created by Hakan Kjellerstrand, hakank@gmail.com See also my B-Prolog page: http://www.hakank.org/bprolog/ */ % % Reporting both time and backtracks % time2(Goal):- cputime(Start), statistics(backtracks, Backtracks1), call(Goal), statistics(backtracks, Backtracks2), cputime(End), T is (End-Start)/1000, Backtracks is Backtracks2 - Backtracks1, format('CPU time ~w seconds. Backtracks: ~d\n', [T, Backtracks]). % CLP(FD): 16s go :- N = 10, C = 4, time(coins(N, C)). % % IP solve: Fast as expected: 0.044s % go2 :- N = 31, C = 14, time(coins_ip(N,C)). % sat_solve: 22.72s go3 :- N = 10, C = 4, time(coins_sat(N,C)). % cp_solve: 17.8s go4 :- N = 10, C = 4, time(coins_cp(N,C)). % % CLP(FD) testing all labelings (with a timeout) % % It took 13:56 minutes to run this with a 30s timeout. % Best was [ff,reverse_split] in 15.91s. % go5 :- N = 10, C = 4, Timeout is 30 * 1000, % in millis selection(VariableSelect), choice(ValueSelect), foreach(Var in VariableSelect, Val in ValueSelect, [Result], ( writeln([Var,Val]), time_out(time2(coins_label_test(N,C,Var,Val)), Timeout,Result), writeln('Timeout result':Result), nl ) ). pretty_print(X) :- N @= X^length, foreach(I in 1..N, (foreach(J in 1..N,[XX], ( XX @= X[I,J], format('~d ', [XX]) ) ), nl ) ). % standard CLP(FD) coins(N,C) :- % N = 10, % 31 the grid size % C = 6, % 14, number of coins per row/column new_array(X, [N,N]), array_to_list(X, Vars), Vars :: 0..1, % Sum :: 0..99999, Sum #>= 0, foreach(I in 1..N, ( C #= sum([T : J in 1..N, [T], T @= X[I,J]]), % rows C #= sum([T : J in 1..N, [T], T @= X[J,I]]) % columns ) ), % quadratic horizontal distance Sum #= sum([ T : I in 1..N, J in 1..N, [T], T @= (X[I,J] * abs(I-J)*abs(I-J)) ]), minof(labeling([ff,reverse_split],Vars),Sum), writeln(sum:Sum), pretty_print(X). % IP solver coins_ip(N, C) :- % N = 10, % 31 the grid size % C = 6, % 14, number of coins per row/column new_array(X, [N,N]), array_to_list(X, Vars), Vars :: 0..1, % Sum :: 0..99999, Sum $>= 0, foreach(I in 1..N, ( C $= sum([T : J in 1..N, [T], T @= X[I,J]]), % rows C $= sum([T : J in 1..N, [T], T @= X[J,I]]) % columns ) ), % quadratic horizontal distance Sum $= sum([ T : I in 1..N, J in 1..N, [T], T @= (X[I,J] * abs(I-J)*abs(I-J)) ]), % minof(labeling([ff,down],Vars),Sum), ip_solve([min(Sum)], Vars), writeln(sum:Sum), pretty_print(X). % SAT solver coins_sat(N, C) :- % N = 10, % 31 the grid size % C = 6, % 14, number of coins per row/column new_array(X, [N,N]), array_to_list(X, Vars), Vars :: 0..1, % Sum :: 0..99999, Sum $>= 0, foreach(I in 1..N, ( C $= sum([T : J in 1..N, [T], T @= X[I,J]]), % rows C $= sum([T : J in 1..N, [T], T @= X[J,I]]) % columns ) ), % quadratic horizontal distance Sum $= sum([ T : I in 1..N, J in 1..N, [T], T @= (X[I,J] * abs(I-J)*abs(I-J)) ]), % minof(labeling([ff,down],Vars),Sum), sat_solve([min(Sum)], Vars), writeln(sum:Sum), pretty_print(X). % CP solve (!= CLP(FD) it seems) coins_cp(N, C) :- % N = 10, % 31 the grid size % C = 6, % 14, number of coins per row/column new_array(X, [N,N]), array_to_list(X, Vars), Vars :: 0..1, % Sum :: 0..99999, Sum $>= 0, foreach(I in 1..N, ( C $= sum([T : J in 1..N, [T], T @= X[I,J]]), % rows C $= sum([T : J in 1..N, [T], T @= X[J,I]]) % columns ) ), % quadratic horizontal distance Sum $= sum([ T : I in 1..N, J in 1..N, [T], T @= (X[I,J] * abs(I-J)*abs(I-J)) ]), cp_solve([min(Sum),ff,reverse_split], Vars), writeln(sum:Sum), pretty_print(X). % standard CLP(FD) coins_label_test(N,C,VariableSel,ValueSel) :- % N = 10, % 31 the grid size % C = 6, % 14, number of coins per row/column new_array(X, [N,N]), array_to_list(X, Vars), Vars :: 0..1, % Sum :: 0..99999, Sum #>= 0, foreach(I in 1..N, ( C #= sum([T : J in 1..N, [T], T @= X[I,J]]), % rows C #= sum([T : J in 1..N, [T], T @= X[J,I]]) % columns ) ), % quadratic horizontal distance Sum #= sum([ T : I in 1..N, J in 1..N, [T], T @= (X[I,J] * abs(I-J)*abs(I-J)) ]), ( minof(labeling([VariableSel,ValueSel],Vars),Sum) -> writeln(sum:Sum), pretty_print(X) ; writeln('Failed for some reason'), true ). % Variable selection selection([backward,constr,degree,ff,ffc,forward,inout,leftmost,max,min]). % Value selection choice([down,updown,split,reverse_split]).